首页> 外文OA文献 >MergeAlign: improving multiple sequence alignment performance by dynamic reconstruction of consensus multiple sequence alignments.
【2h】

MergeAlign: improving multiple sequence alignment performance by dynamic reconstruction of consensus multiple sequence alignments.

机译:MergeAlign:通过动态重建共有的多个序列比对来改善多个序列的比对性能。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BACKGROUND: The generation of multiple sequence alignments (MSAs) is a crucial step for many bioinformatic analyses. Thus improving MSA accuracy and identifying potential errors in MSAs is important for a wide range of post-genomic research. We present a novel method called MergeAlign which constructs consensus MSAs from multiple independent MSAs and assigns an alignment precision score to each column. RESULTS: Using conventional benchmark tests we demonstrate that on average MergeAlign MSAs are more accurate than MSAs generated using any single matrix of sequence substitution. We show that MergeAlign column scores are related to alignment precision and hence provide an ab initio method of estimating alignment precision in the absence of curated reference MSAs. Using two novel and independent alignment performance tests that utilise a large set of orthologous gene families we demonstrate that increasing MSA performance leads to an increase in the performance of downstream phylogenetic analyses. CONCLUSION: Using multiple tests of alignment performance we demonstrate that this novel method has broad general application in biological research.
机译:背景:多重序列比对(MSA)的产生是许多生物信息学分析的关键步骤。因此,提高MSA准确性并识别MSA中的潜在错误对于广泛的后基因组研究非常重要。我们提出了一种称为MergeAlign的新颖方法,该方法从多个独立的MSA构造共识MSA,并为每个列分配对齐精度得分。结果:使用常规基准测试,我们证明,平均而言,MergeAlign MSA比使用任何单个序列取代矩阵生成的MSA更为准确。我们显示,MergeAlign列分数与对齐精度有关,因此提供了从头算的方法来估计对齐精度,而该方法无需指定参考MSA。使用两个利用大量直系同源基因家族的新颖且独立的比对性能测试,我们证明了提高的MSA性能会导致下游系统发生分析性能的提高。结论:使用对准性能的多个测试,我们证明了这种新方法在生物学研究中具有广泛的通用性。

著录项

  • 作者

    Collingridge, PW; Kelly, S;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号